Etiqueta: Almacenamiento energético

¿Es posible transformar el calor de los volcanes en electricidad limpia?

La energía producida a partir de las fumarolas de los volcanes, desarrollada por primera vez a nivel mundial por un equipo de investigadores de la Universidad de Navarra, permite generar energía durante todo el año, independientemente de las condiciones climatológicas.


La preocupación por el medio ambiente y el cambio climático ha impulsado la innovación sostenible, sobre todo en cuestión de transición energética. La búsqueda de alternativas para obtener electricidad ha llevado a generar soluciones a partir del agua marina, de la nieve, del compost, y también de los volcanes. Un grupo de investigadores españoles de la Universidad Pública de Navarra (UPNA), pertenecientes al Instituto de Smart Cities (ISC), ha desarrollado un generador termoeléctrico pionero a nivel mundial, que es capaz de producir energía eléctrica renovable a partir del calor volcánico que llega a la superficie terrestre. Este generador tiene un impacto medioambiental mínimo, ya que se trata de energía limpia.

El proyecto Generadores Termoeléctricos Autónomos para Vigilancia Volcánica (VIVOTEG), financiado por la Agencia Estatal de Investigación, se puso en marcha para desarrollar una tecnología inédita, basada en generadores termoeléctricos capaces de aprovechar el calor geotérmico presente en las fumarolas de los volcanes para producir electricidad y poder alimentar las estaciones de vigilancia volcánica. Su gran ventaja es que es capaz de producir energía eléctrica de manera continua, independientemente de las condiciones ambientales o de la luz solar, por lo que supone un avance en la monitorización en tiempo real de fenómenos geológicos y volcánicos.

Los generadores termoeléctricos funcionan gracias a un sistema modular de efecto Seebeck, unos dispositivos que transforman el calor geotérmico en energía eléctrica, con una diferencia mínima de temperatura

El grupo de investigación de la UPNA ha empleado módulos termoeléctricos de efecto Seebeck, unos dispositivos que transforman el calor geotérmico en energía eléctrica. Para que los módulos funcionen, necesitan tener un lado caliente y otro frío. El calor de la Tierra calienta un lado del módulo y el aire frío de la Antártida, la región donde se ha probado, enfría el otro. Los investigadores han creado la diferencia de temperatura necesaria con el desarrollo de intercambiadores de calor de alta eficiencia, capaces de transportar el calor geotérmico desde el suelo, a una profundidad de 40 centímetros, hasta el módulo termoeléctrico, con muy poca pérdida de temperatura. Estos intercambiadores de calor maximizan esa diferencia de temperatura, acercando la cara caliente de los módulos a la temperatura de la fuente de calor, y la cara fría a la temperatura ambiente.

Los generadores termoeléctricos geotérmicos no emplean partes móviles como bombas o ventiladores, lo que reduce al mínimo su mantenimiento y los convierte en generadores eléctricos muy robustos, que tienen la posibilidad de funcionar durante todo el año. Además, su diseño modular permite aumentar la potencia producida solo con la instalación de más módulos termoeléctricos.

Un avance de gran importancia a la hora de superar el reto de dotar de suministro energético a los sensores de medida y equipos de emisión de datos de proyectos científicos geológicos y vulcanológicos, así como a las estaciones de vigilancia volcánica, especialmente, a los que se hallan en lugares remotos y de climatología extrema, como la isla Decepción de la Antártida.

Este método permitirá mejorar el estudio geológico y la vigilancia volcánica, y, en consecuencia, incrementará la predicción de las erupciones volcánicas para anticipar y reducir los impactos potenciales sobre la población

Además, permitirá mejorar el estudio geológico y la vigilancia volcánica de la zona y hará posible tener datos geológicos en tiempo real durante todo el año, incluido el invierno. Extrapolar los generadores termoeléctricos a muchos otros volcanes del mundo contribuiría a aumentar la seguridad de la sociedad, al mejorar la vigilancia volcánica con una mejor y mayor anticipación a las erupciones. También, facilitaría la predicción de las erupciones volcánicas, lo que contribuiría a reducir los posibles impactos sobre la población. 

Por tanto, esta iniciativa supone un gran paso, tanto a nivel medioambiental como científico, ya que abre la posibilidad de llevar energía a zonas del mundo antes impensables por sus condiciones climáticas, y demuestra que, en cuanto a energías limpias y desarrollo sostenible, aún queda mucho por descubrir. 

Así es la nueva energía que se utilizará en las misiones interplanetarias

La mayoría de naves espaciales utilizan paneles solares para generar la electricidad que les permita funcionar. Pero los ambientes más extremos invalidan su eficacia. Las células termorradiativas evitan este problema uniendo energía solar y nuclear.


¿Podría una misión espacial llegar hasta Urano, el séptimo planeta de nuestro sistema solar? ¿Sería posible generar la energía necesaria para propulsar un satélite hasta un planeta que es puro hielo y se encuentra a 2.721 millones de kilómetros del nuestro? Esto es lo que se ha propuesto el programa de la NASA Innovative Advanced Concepts (NIAC).

Cada año, el NIAC subvenciona proyectos tecnológicos innovadores que permitan a la NASA seguir avanzando en sus investigaciones lejos de la atmósfera terrestre. Y este mismo año, uno de los proyectos subvencionados ha sido el desarrollado por un equipo de científicos del Rochester Institute of Technology del estado de Nueva York (EE.UU.). Se trata de una nueva fuente de propulsión generada por una combinación de energía solar y energía nuclear que podría enviar pequeñas naves espaciales hasta los mismos límites del sistema solar.

Los paneles solares que alimentan las naves espaciales carecen de eficacia alrededor de los -218ºC que llega a alcanzar el planeta Urano

La posibilidad de que, gracias a esta nueva fuente de propulsión que recibe el nombre de células termorradiativas (TRC), pequeñas naves espaciales puedan alcanzar Urano es absolutamente revolucionaria porque, hasta ahora, la energía que utilizan es generada por paneles solares. Urano, como decíamos al inicio, es un planeta tan frío que se conoce como el «gigante de hielo», y alcanza temperaturas de -218ºC. Evidentemente, los paneles solares que producen la energía de la gran mayoría de naves espaciales que, en la actualidad, surcan el espacio, no servirían para producir energía en ambientes tan gélidos y a los que la luz del sol apenas roza.

Con las TRC, los científicos pretenden lograr unos propulsores más potentes y resistentes a las temperaturas extremas que rodean los planetas más alejados del nuestro. La primera fase de su estudio, dejó patente la efectividad de este sistema cuyo funcionamiento es el contrario al de una célula solar: en vez de producir calor, convierte el calor producido por un radioisótopo (combustible nuclear) en luz infrarroja que, enviada al espacio, genera electricidad durante su recorrido. Lo que permite este sistema es crear unos motores más pequeños, sin piezas móviles que provoquen fallos mecánicos, y con una potencia significativamente mayor que la de los actuales paneles solares, de cuya energía se alimentan las naves espaciales. Además, debido al máximo aprovechamiento que hacen de la energía solar, se convierten en un tipo de motores altamente sostenibles.

Las células termorradiativas convierten el calor producido por combustibles nucleares en luz infrarroja que, enviada al espacio, genera energía en su recorrido

El proyecto se encuentra ya en su segunda fase, y los científicos quieren lograr que los motores de TRC puedan reducirse aún más en peso y tamaño y, sobre todo, minimizar al máximo su consumo de energía. También, se están realizando diversos experimentos que posibiliten crear motores TRC capaces de soportar temperaturas aún más extremas.

El programa NIAC, mientras tanto, seguro del éxito de las investigaciones, ha definido ya el tipo de nave espacial que, con los TRC, quieren hacer llegar hasta Urano. Se trata de los «CubeSats», un satélite cúbico en miniatura creado en 2002 por investigadores de la Universidad de Stanford.

La hoja de ruta ya está marcada, y si las investigaciones siguen el mismo curso que hasta ahora, pronto podremos comprobar cómo un CubeSat impulsado por TRC alcance los confines del sistema solar.

Almacenamiento energético, un nuevo reto para las renovables

Hace varias décadas, la transición «verde» descubrió nuevas fuentes de energía para garantizar el suministro eléctrico sin abusar del planeta. Ahora, la clave ya no está en producir, sino en guardar adecuadamente lo producido. 


En España, la producción de energía renovable es especialmente buena durante los meses de primavera y verano, cuando el sol aprieta y los vientos son más fuertes. Sin embargo, es en invierno cuando mayor uso se hace de este recurso, dadas las bajas temperaturas y las pocas horas de luz natural. ¿Cómo somos capaces de abastecernos de una temporada a otra?

Hoy por hoy, en el país hay más capacidad instalada para generar energía solar y eólica de la que se puede utilizar o vender a otros países. De hecho, el último informe elaborado por Trinomics, Fraunhofer-Gesellschaft y TNO apunta que España es uno de los países que «más proyectan energía almacenada en la Unión Europea», fruto de su gran inversión en tecnología de almacenamiento energético. 

Ahora bien: si realmente se produce tanta energía renovable, ¿qué se hace con ella, tanto para periodos de escasez como para prevenir el desperdicio? Su naturaleza intermitente presenta desafíos para la gestión de la red eléctrica y la satisfacción de la demanda en todo momento, por lo que un almacenamiento efectivo es –por ahora– el puente más estable entre generación de energía y suministro constante.

España posee más capacidad para generar energía solar y eólica de la que puede utilizar, y es uno de los países que más proyecta energía almacenada en la Unión Europea

Hace poco más de un año, el Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO) presentó su estrategia de almacenamiento energético, en la que destacaba el hidrógeno renovable como uno de los sistemas más innovadores, ya que «desempeñará un papel clave en la reducción de las emisiones de sectores difíciles de descarbonizar, de procesos industriales de alta temperatura (por ejemplo la fundición de metales o la producción de cerámica) o de múltiples medios de transporte convencionales, desde los vehículos ligeros a camiones, autobuses o trenes».

Otra propuesta prometedora son las baterías de litio, que a pesar de su coste elevado parecen ser las más eficientes, aptas para el autoconsumo, y las que más proyección de futuro tienen. De este modo, si se combinan con placas solares, pueden almacenar la energía sobrante para utilizarla en momentos en que no haya sol. Sin embargo, el problema de este sistema es que el litio es un bien tan preciado que acabará escaseando, pues se utiliza en buena parte de los dispositivos electrónicos, incluidos los teléfonos móviles y los coches eléctricos.

El hidrógeno «verde», las baterías de litio o las centrales hidroeléctricas de bombeo son algunas de las propuestas más prometedoras para almacenar energía de forma eficiente

Asimismo, las centrales hidroeléctricas de bombeo son de las tecnologías más maduras de entre las actuales. Estas instalaciones utilizan la energía excedente para bombear agua hacia un depósito en altura durante períodos de baja demanda. Luego, el agua se libera para generar electricidad en momentos de alta demanda. Estas centrales comparten protagonismo con el almacenamiento término, que intenta preservar energía en forma de calor en materiales como sales fundidas o líquidos calientes, algo especialmente interesante para aplicaciones de calefacción y refrigeración.

En definitiva, el almacenamiento de energía renovable no es simplemente un capricho, sino una oportunidad para impulsar la transformación de nuestro sistema energético y mitigar el cambio climático. A medida que las renovables continúan ganando terreno, la capacidad de gestionarlas de forma eficiente se vuelve cada vez más relevante. Si bien los desafíos son evidentes, las innovaciones tecnológicas y las inversiones en esta área prometen una revolución en la forma en que capturamos, almacenamos y utilizamos la energía, allanando el camino hacia un futuro más limpio y sostenible para nuestro planeta.