La mayoría de naves espaciales utilizan paneles solares para generar la electricidad que les permita funcionar. Pero los ambientes más extremos invalidan su eficacia. Las células termorradiativas evitan este problema uniendo energía solar y nuclear.
¿Podría una misión espacial llegar hasta Urano, el séptimo planeta de nuestro sistema solar? ¿Sería posible generar la energía necesaria para propulsar un satélite hasta un planeta que es puro hielo y se encuentra a 2.721 millones de kilómetros del nuestro? Esto es lo que se ha propuesto el programa de la NASA Innovative Advanced Concepts (NIAC).
Cada año, el NIAC subvenciona proyectos tecnológicos innovadores que permitan a la NASA seguir avanzando en sus investigaciones lejos de la atmósfera terrestre. Y este mismo año, uno de los proyectos subvencionados ha sido el desarrollado por un equipo de científicos del Rochester Institute of Technology del estado de Nueva York (EE.UU.). Se trata de una nueva fuente de propulsión generada por una combinación de energía solar y energía nuclear que podría enviar pequeñas naves espaciales hasta los mismos límites del sistema solar.
Los paneles solares que alimentan las naves espaciales carecen de eficacia alrededor de los -218ºC que llega a alcanzar el planeta Urano
La posibilidad de que, gracias a esta nueva fuente de propulsión que recibe el nombre de células termorradiativas (TRC), pequeñas naves espaciales puedan alcanzar Urano es absolutamente revolucionaria porque, hasta ahora, la energía que utilizan es generada por paneles solares. Urano, como decíamos al inicio, es un planeta tan frío que se conoce como el «gigante de hielo», y alcanza temperaturas de -218ºC. Evidentemente, los paneles solares que producen la energía de la gran mayoría de naves espaciales que, en la actualidad, surcan el espacio, no servirían para producir energía en ambientes tan gélidos y a los que la luz del sol apenas roza.
Con las TRC, los científicos pretenden lograr unos propulsores más potentes y resistentes a las temperaturas extremas que rodean los planetas más alejados del nuestro. La primera fase de su estudio, dejó patente la efectividad de este sistema cuyo funcionamiento es el contrario al de una célula solar: en vez de producir calor, convierte el calor producido por un radioisótopo (combustible nuclear) en luz infrarroja que, enviada al espacio, genera electricidad durante su recorrido. Lo que permite este sistema es crear unos motores más pequeños, sin piezas móviles que provoquen fallos mecánicos, y con una potencia significativamente mayor que la de los actuales paneles solares, de cuya energía se alimentan las naves espaciales. Además, debido al máximo aprovechamiento que hacen de la energía solar, se convierten en un tipo de motores altamente sostenibles.
Las células termorradiativas convierten el calor producido por combustibles nucleares en luz infrarroja que, enviada al espacio, genera energía en su recorrido
El proyecto se encuentra ya en su segunda fase, y los científicos quieren lograr que los motores de TRC puedan reducirse aún más en peso y tamaño y, sobre todo, minimizar al máximo su consumo de energía. También, se están realizando diversos experimentos que posibiliten crear motores TRC capaces de soportar temperaturas aún más extremas.
El programa NIAC, mientras tanto, seguro del éxito de las investigaciones, ha definido ya el tipo de nave espacial que, con los TRC, quieren hacer llegar hasta Urano. Se trata de los «CubeSats», un satélite cúbico en miniatura creado en 2002 por investigadores de la Universidad de Stanford.
La hoja de ruta ya está marcada, y si las investigaciones siguen el mismo curso que hasta ahora, pronto podremos comprobar cómo un CubeSat impulsado por TRC alcance los confines del sistema solar.